Optimality Functions and Lopsided Convergence
نویسندگان
چکیده
Optimality functions pioneered by E. Polak characterize stationary points, quantify the degree with which a point fails to be stationary, and play central roles in algorithm development. For optimization problems requiring approximations, optimality functions can be used to ensure consistency in approximations, with the consequence that optimal and stationary points of the approximate problems indeed are approximately optimal and stationary for an original problem. In this paper, we review the framework and illustrate its application to nonlinear programming and other areas. Moreover, we introduce lopsided convergence of bifunctions on metric spaces and show that Johannes O. Royset, Corresponding author Naval Postgraduate School, Monterey, California [email protected] Roger J-B Wets University of California, Davis, California [email protected] 2 Johannes O. Royset, Roger J-B Wets this notion of convergence is instrumental in establishing consistency of approximations. Lopsided convergence also leads to further characterizations of stationary points under perturbations and approximations.
منابع مشابه
On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process
We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...
متن کاملVariational convergence of bivariate functions: lopsided convergence
We explore convergence notions for bivariate functions that yield convergence and stability results for their maxinf (or minsup) points. This lays the foundations for the study of the stability of solutions to variational inequalities, the solutions of inclusions, of Nash equilibrium points of non-cooperative games and Walras economic equilibrium points, of fixed points, of solutions to inclusi...
متن کاملOptimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملOn Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملConvergence of trajectories in infinite horizon optimization
In this paper, we investigate the convergence of a sequence of minimizing trajectories in infinite horizon optimization problems. The convergence is considered in the sense of ideals and their particular case called the statistical convergence. The optimality is defined as a total cost over the infinite horizon.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Optimization Theory and Applications
دوره 169 شماره
صفحات -
تاریخ انتشار 2016